Contest File (North/Central/South America)
High School Division
Saturday, March 26, 2022

1. What is the sum of all positive integers that evenly divide 1680 but not 240 ?
2. The product of 9 consecutive positive integers, the median of which is 7 , is equal to t times the product of 5 consecutive positive integers, the median of which is 7 . Compute t.
(a) 280
(b) 720
(c) 1320
(d) 2520
(e) none of the above
3. Let $A B C$ be a triangle with $A B=20, B C=22$, and $C A^{2}=444$. Compute the area of $\triangle A B C$. Express your answer in simplest radical form.
4. Square $A B C D$ has side length 20 , and square $C E F G$ has side length 22 , with $\overline{B C}$ lying in the interior of $\overline{C G}$. Compute the area of pentagon $A B G F D$.
5. A problem on a test has an answer that is a common fraction, and contains the instruction, "Let your answer be of the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m+n$." If the raw answer were some positive real quantity r, the final answer would be some integer N, but if the raw answer were instead $r+\frac{1}{5}$, the final answer would be 5 . Compute the sum of all possible values of N.
(a) 75
(b) 90
(c) 110
(d) 135
(e) none of the above
6. Consider the set $S=\{1,2,3, \cdots, 1100\}$. What is the fewest number of elements that we must remove from S so that there is no pair of distinct elements in S that sum to 2022?
7. Compute the number of positive integers $n \leq 10000$ for which there lies a perfect square between n and $n+100$, inclusive.
8. Given that $0 \leq x<2 \pi$ is a real number for which

$$
\frac{\sin (3 x)}{\sin (x)}=\frac{3}{4}
$$

the value of $\cos ^{2}(x)$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m+n$.
9. Compute

$$
\sum_{k=0}^{10} k\binom{10}{k}^{2}
$$

10. Regular hexagon $A B C D E F$ has side length 1 . How many of the $\binom{6}{4}=15$ quadrilaterals whose vertices are four distinct vertices of the hexagon have an inscribed circle?
11. Triangle $A B C$ has $A B=20, B C=22$, and $C A=21$. Point D lies on $\overline{A C}$ such that $m \angle A B D=$ $m \angle C B D$. Point F lies on $\overline{A B}$ such that $\overline{F D} \| \overline{B C}$. The area of $\triangle B D F$ can be written in the form $\frac{p \sqrt{q}}{r}$, where p, q, and r are positive integers such that $\operatorname{gcd}(p, r)=1$ and q is square-free. Compute $p+q+r$.
12. Triangle $A B C$ has $A B=5, B C=12$. For some real numbers $x \in[0,1]$ and t, if $\cos (m \angle A B C)=x$, then $C A^{2}=t$, but if $\sin (m \angle A B C)=x$, then $C A^{2}=t-24$. Compute t.
13. Define the A-index of a permutation of a string of letters to be the total number of A's in contiguous substrings of the string that have length at least 2. For example, the A-index of the permutation AAALBMA of ALABAMA is 3, and the A-index of the permutation ABRCAADBARA of ABRACADABRA is 2. Compute the sum of all A -indices of all permutations of the string AAAABBCC.
14. Triangle $A B C$ has $A B=3, B C=4$, and $C A=5$. Point P lies on $\overline{B C}$ so that $\tan (m \angle B A P)+$ $\tan (m \angle P A C)=1$. Compute $A P^{2}$.
15. Suppose that z_{1} and z_{2} are complex numbers with $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $z_{1}+z_{2}=1+\frac{3}{2} i$. Compute the product of the imaginary parts of z_{1} and z_{2}.
16. Evaluate the sum

$$
\sum_{n=1}^{\infty} \frac{n^{4}}{n!}
$$

17. For each real number x, define

$$
S(x):=i x-\frac{1}{2!} x^{2}-i \frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+i \frac{1}{5!} x^{5}-\frac{1}{6!} x^{6}-i \frac{1}{7!} x^{7}+\frac{1}{8!} x^{8}+\cdots
$$

If $0 \leq x<2 \pi$ is a real number such that $S(x)^{12}=1$, compute the product of the possible values of x.
18. Equilateral triangle $A B C$ has side length 2 . When $\triangle A B C$ is rotated by 45° clockwise about vertex A to map vertices A, B, and C to A^{\prime}, B^{\prime}, and C^{\prime}, respectively, in triangle $A^{\prime} B^{\prime} C^{\prime}$ (where $A^{\prime}=A$), the area of overlap between triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ can be written in the form $\frac{p+\sqrt{q}-\sqrt{r}-\sqrt{s}}{t}$, where p, q, r, s, and t are positive integers. Compute $p+q+r+s+t$.
19. For how many ordered pairs (a, b) of positive integers with $1 \leq a, b \leq 10$ does the equation $4 x^{4}+$ $2 a x^{3}+b x^{2}+a x+1=0$ have exactly two real solutions in x (up to multiplicity)?
20. For each real number $x \neq 0$, define

$$
f(x):=\frac{x+1}{x}
$$

and define

$$
g(x, h):=\frac{f(x+h)-f(x)}{h}
$$

For some integer c, there exist exactly two distinct real values of x such that $g(x, c+1)-g(x, c)=x$. Compute the sum of the squares of the possible values of c.

